The Vibrational Spectra of SbX₆³⁻ and TeX₆²⁻ Anions: New Observations on the Singular Properties of some Systems Related to XeF₆

By C. J. Adams and A. J. Downs*

(Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR)

Summary New measurements of the vibrational spectra of the isoelectronic anions TeX_6^{2-} and SbX_6^{3-} (X = Cl, Br, or I), electronically related to XeF_6 , reveal some remarkable deviations from the properties established for conventional octahedral systems.

REGARDING the stereochemical peculiarities of systems related to XeF_{6} ,¹ we report some of our results for the anions TeX_{6}^{2-} and SbX_{6}^{3-} (X = Cl, Br, or I), i.r. and Raman spectra of which have been recorded in a wide variety of conditions. These results expose striking departures from the spectroscopic properties of normal octahedral species, and imply for the SbX_{6}^{3-} anions an unusual degree of stereochemical flexibility.

For the TeX₆²⁻ anions in non-aqueous solution the frequencies of the observed vibrational fundamentals are generally in good agreement with those reported elsewhere² for the anions in crystalline solids and in aqueous solution. Neither the patterns nor the frequencies of the bands are substantially dependent on the nature of the solvent or of the cation. The most noteworthy findings, seen to best effect for the TeBr₆²⁻ ion, the spectra of which in dichloromethane solution are illustrated in the Figure, are as follows: (i) The Raman lines due to $v_1(a_{1g})$ and $v_2(e_g)$ of the TeCl₆²⁻ and TeBr₆²⁻ ions are unusual in their relative intensities,

 $I(v_2)/I(v_1)$ being 0.5—1: for SnCl_6^{2-} and SnBr_6^{2-} , octahedral species presumably representative of normal behaviour, $I(v_2)/I(v_1)$ is about 0.05—0.1. Because of the apparent coincidence of v_1 and v_2 the relative intensities cannot be assessed for TeI_6^{2-} . Among other octahedral anions behaviour comparable with that of TeCI_6^{2-} and TeBr_6^{2-} has been reported only for PdCl_6^{2-} , PtCl_6^{2-} , and PtBr_6^{2-} for which $I(v_2)/I(v_1) > 1.3$

(ii) Contrary to the O_h selection rules the fundamental ν_3 (t_{1u}) is clearly perceptible in the Raman spectra of TeBr_6^{2-} (in various solvents) and TeI_6^{2-} (in water²).

(iii) No feature attributable to the t_{1u} deformation v_4 could be detected at frequencies above 70 cm⁻¹.

The spectroscopic distinctions between the SnBr_{6}^{2-} and TeBr_{6}^{2-} ions are evident in the Figure.

Subsequent to the formation of the ions SbX_4^- and SbX_5^{2-} in non-aqueous solution (X = F, Cl, Br, or I), the ions SbBr_6^{3-} and SbI_6^{3-} have been identified as the ultimate complexes formed between the appropriate antimony trihalide and an excess of halide ions in the presence of the cations NEt_4^+ or NBun_4^+ . In the i.r. and Raman spectra of the anions, essential features of which are summarised in the Table and illustrated for SbBr_6^{3-} in the Figure, the frequencies, relative intensities and polarization properties

	Solid [Co(NH ₃)6]SbX6		SbX ₈ ^{3–} in aq. HX	SbX ₆ ³⁻ in CH ₂ Cl ₂ ^a	
Anion	Raman cm ⁻¹	I.r. cm ⁻¹	Raman cm ⁻¹	Raman cm ⁻¹	I.r. cm ⁻¹
SbCl ₆ ³⁻	268 m 218 w	215 sh 172 vs,vbr	320 s,p 268 s,p(?)		
	113 s		140 w,up		
SbBr ₆ ³−			$176 \circ vhr^{b}$	229 s,p	229 w
	159 m	141 s.br	110 3, 101	156 s,br,p	<i>ca</i> . 150 vbr
	137 w 81 s			134 m,dp	
SbI ₆ ³−	67 w	69 m	60 w	183 w n	183 w
		122 s	136 s,p	100 w,p	105 W
	117 m 104 s		104 m,dp	105 s.p 96 w.dp	100 w
	79 w 61 mw 40 mw	39 ms		,. <u>r</u>	
		00 1115			

I.r. and Raman spectra of hexahalogenoantimonate(III) anions

s = strong; m = medium; w = weak; br = broad; sh = shoulder; v = very; p = polarized; dp = depolarized. a Similar results obtained with MeCN, Me₂CO, or MeOH as solvent.

^b Band polarized on the high-frequency side.

FIGURE. Raman and far-i.r. spectra of some solutions of hexabromometallates in dichloromethane.

of the bands are strikingly at variance with those of a conventional octahedral species like SnBr_s²⁻. The region associated with Sb-X stretching modes of the anions contains no less than three Raman lines, two of which are polarized and coincident with absorptions in the i.r. Although manifestly incomplete, the spectra can be reconciled not with regular O_h symmetry for the SbX₈³⁻ anions but with a distorted octahedral unit belonging to the symmetry group C_{3v} . A similar structure is favoured¹ for the instantaneous configuration of gaseous XeF₆. For the solvents dichloromethane, acetonitrile, acetone, and methanol the results are found to be independent of the nature of the solvent. However, for aqueous solutions of the ions SbBr₆³⁻ and SbI₆³⁻, as well as for SbCl₆³⁻ (not found in significant quantities in non-aqueous media), the Raman spectrum consists of two or three relatively broad bands; where comparison is possible, radically different frequencies, intensities and depolarization ratios are found for the ions in aqueous and non-aqueous solutions. In turn, the form of the vibrational features recorded for the hexahalogenoantimonate(III) ions in crystalline solids bears little resemblance to that found in the solution studies, and is moreover highly sensitive to the nature of the cation.

In their failure to conform with the vibrational behaviour of conventional octahedral systems the isoelectronic ions TeX_{6}^{2-} and SbX_{6}^{3-} are themselves dissimilar in their properties. We believe that TeX_{θ}^{2-} has an O_{h} ground state the vibrational characteristics of which are perturbed by less symmetrical electronically excited states, leading to the breakdown of the O_h selection rules and giving rise possibly to a vibration of abnormally low frequency and large amplitude for the t_{1u} deformation v_4 .⁴ However, except in the solid complexes [Co(NH₃)₆]SbX₆, SbX₆³⁻ appears to adopt a non-octahedral configuration highly susceptible to the influence of its environment.

adaptation of the latter to excitation with an He-Ne laser, and (ii) for a research studentship (to C. J. A.)

(Received, November 3rd, 1970: Com. 1905.)

- ¹ L. S. Bartell and R. M. Gavin, jun., J. Chem. Phys., 1968, 48, 2460, 2466.
 ² P. J. Hendra and Z. Jovič, J. Chem. Soc. (A), 1968, 600; D. M. Adams and D. M. Morris, *ibid.*, 1967, 2067.
 ³ L. A. Woodward and J. A. Creighton, Spectrochim. Acta, 1961, 17, 594; L. A. Woodward and M. J. Ware, *ibid.*, 1963, 19, 775.
 ⁴ See for example I. D. Brown, Canad. J. Chem., 1964, 42, 2758; A. K. Das and I. D. Brown, *ibid.*, 1966, 44, 939.